Ford circles have interesting geometric properties and are based on Farey sequences. Below is a simple octave program to draw these circles: pkg load geometry figure(1); clf; hold on; axis ([0, 0.5, 0, 0.26], "equal"); grid on; title ("Cercles de Ford et suites de Farey"); xlabel ("x"); ylabel ("y"); function cford (n) % dessin des cercles de Ford % basé sur les suites de Farey des fractions irréductibles p=0;q=1;c=1;d=n; drawCircle(p/q, 1/(2*q^2), 1/(2*q^2)); while(c<n) k=round((n+q)/d); e=k*c-p;f=k*d-q; p=c;q=d;c=e;d=f; drawCircle(p/q, 1/(2*q^2), 1/(2*q^2)); endwhile endfunction cford(32); print -deps cford.eps print -dsvg cford.svg The resulting svg cropped figure is provided below: |
Main Page >